Как проверить химический состав металла

Как проверить химический состав металла

Контроль химического состава сталей и сплавов позволяет прогнозировать свойства готовых изделий и является важной составляющей комплексной проверки качества металла.

Методы химического анализа металлов

Анализ химического состава можно проводить как «мокрой химией», так и инструментальными методами. Метод «мокрой химии» заключается в предварительном растворении пробы и последующим выделении нужных компонентов (осаждением, электрохимическим разделением и др.) Такой анализ занимает много времени, иногда до нескольких дней и требует специального образования и высокой квалификации инженера. В противоположность этому инструментальные методы, выполняемые на современных приборах, позволяют проводить анализ химического состава металлов после короткого инструктажа и требуют лишь элементарных навыков работы на компьютере.

Приборы для анализа химического состава металлов

В настоящее время наибольшее распространение получили следующие приборы:

  • Стилоскопы
  • Портативные рентгенофлуоресцентные спектрометры
  • Портативные лазерные спектрометры
  • Оптико-эмиссионные спектрометры

Стилоскопы

Стилоскопы являются простейшими спектральными приборами. Суть метода заключается в испарении металла под действием разряда и наблюдении оператором образующегося при этом свечения. По яркости спектральных линий можно судить о концентрации различных элементов. Стилоскопы имеют невысокую стоимость, но работа на них довольно сложна и требует специальных навыков, обучение которым занимает от нескольких месяцев до нескольких лет. Кроме того, стилоскопы являются оценочными приборами, - результаты анализа зависят от субъективной оценки оператора. Эта особенность не позволяет использовать данные приборы во многих технологических процессах, когда требуются точные данные об элементном составе металла.

Портативные рентгенофлуоресцентные спектрометры

Портативные рентгенофлуоресцентные спектрометры получили широкое распространение из-за небольшого веса и простоты обращения. Приборы часто называют «пистолетами» из-за внешнего сходства – в приборе есть рукоятка, курок и «дуло», в котором находятся рентгеновская трубка и детектор. При нажатии на курок трубка начинает генерировать рентгеновское излучение, оно вызывает ответное характеристическое излучение от атомов образца, которое регистрируется детектором. Малые размеры и вес позволяют использовать такие приборы вне лаборатории. Пробоподготовка не требуется – нужно только очистить поверхность металла от грязи, ржавчины, краски, окалины. Портативные рентгенофлуоресцентные спектрометры неприхотливы, не требуют периодических рекалибровок, а обучиться работе на них можно за несколько часов, однако существенным ограничением является невозможность анализа углерода, а также высокие пределы обнаружения серы и фосфора.

Оптико-эмиссионные спектрометры

Оптико-эмиссионные спектрометры позволяют анализировать все основные легирующие элементы в сталях и сплавах, включая углерод, серу, фосфор и др. По принципу работы эти приборы схожи со стилоскопами, но спектральные линии анализируются специальными детекторами. Обыскривание должно происходить в инертной среде, поэтому для работы оптико-эмиссионных спектрометров требуется аргон. Спектрометры этого типа обычно довольно массивны и являются настольными или напольными приборами, а передвижные (мобильные) модели располагают на специальных тележках. Несмотря на эти недостатки, оптико-эмиссионные спектрометры отличаются надёжностью, простотой эксплуатации, относительно невысокой стоимостью и требуют лишь простейшей пробоподготовки, благодаря чему на сегодняшний день этот метод является основным для анализа химического состава металлов в большинстве промышленных, экспертных и исследовательских лабораторий.

Портативные лазерные спектрометры

В последние годы на рынке появилось большое количество портативных лазерных приборов. По форме и размерам они похожи на портативные рентгенофлуоресентные спектрометры, а по сути работы – на оптико-эмиссионные приборы. Анализ происходит за счёт измерения интенсивности спектральных линий в оптическом диапазоне, но их появление вызывается воздействием лазера. Портативные лазерные спектрометры выгодно применять при анализе больших потоков лёгких цветных сплавов (алюминия, магния, титана), т.к. их анализ выполняется быстрее и точнее, чем на портативных анализаторах. Однако лазерные анализаторы значительно более прихотливы, чем рентгенофлуоресентные спектрометры – они температурозависмы, требуют регулярных перекалибровок и периодического обслуживания, при этом углерод, ключевой элемент при анализе сталей, анализируется со слишком большой погрешностью.

Иные инструментальные методы

Иные спектральные приборы – атомно-абсорбционные спектрометры, оптико-эмиссионные спектрометры с индуктивно-связанной плазмой, фотоколориметры требуют предварительного растворения пробы, из-за чего менее удобны и в настоящее время применяются реже. Тем не менее, в некоторых случаях, они имеют некоторые преимущества.

Заключение

К сожалению, на сегодняшний день не существует универсального прибора, совмещающего в себе все преимущества разных типов приборов, поэтому выбор метода анализа в каждом конкретном случае необходимо основывать на индивидуальном анализе задач предприятия.

Наша компания ООО "ВЕЛМАС" поставляет все виды оборудования анализа химического состава сталей и сплавов. Мы приглашаем Вас ознакомиться с перечнем приборов. Наши компетентные менеджеры проконсультируют вас по всем вопросам и помогут подобрать приборы, подходящие для решения именно ваших задач.